II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2023

KINEMATICS OF MACHINERY (MECHANICAL ENGINEERING)

Duration: 3 hours

Code: 20ME3401

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks		
	UNIT-I						
1	a)	Explain machine and mechanism with a flow diagram.	L2	CO1	7 M		
	b)	The length of the fixed link in a crank and slotted lever quick return mechanism is 300 mm and crank is 110 mm. Determine the	L2	CO1	7 M		
		inclination of the slotted lever with the vertical in the extreme position.					
		OR		I	1		
2	a)	Explain different types of constrained motions with examples.	L2	CO1	7 M		
	b)	In a Whitworth quick return motion mechanism, the distance between the fixed centers is 50 mm and the length of the driving crank is 75 mm. The length of the slotted lever is 150 mm and the length of the connecting rod is 135 mm. Find the ratio of time of cutting and return strokes and also the effective stroke.	L4	CO1	7 M		

. .

Max. Marks: 70

		UNIT-II			
3	a)	Derive Arnold Kennedy's theorem and	L4	CO2	7 M
		apply to slider crank mechanism.			
	b)	Locate all the Instantaneous centers of slider	L4	CO2	7 M
		crank mechanism with crank length of			
		25mm rotating clockwise at a uniform speed			
		of 100 rpm. The crank makes 45 ⁰ with IDC			
		and the connecting rod is 400 mm long.			
		Determine the velocity of the slider and the			
		angular velocity of connecting rod.			
		OR		1 1	
4	a)	Derive the velocity of piston using I-center	L2	CO2	7 M
		method.			
	b)	In a four link mechanism, the dimensions of	L4	CO2	7 M
		the links are AB=200 mm, BC=400mm,			
		CD=450 mm and AD=600mm. At the			
		instant when $DAB = 90^{\circ}$, the link AB has			
		angular velocity of 36 rad/s in the clockwise			
		direction. Determine			
		(i) The velocity of point C,			
		(ii) The velocity of point E on the link BC			
		When BE =200 mm			
		(iii) The angular velocities of links BC and			
		CD,			
		(iv) Acceleration of link BC.			
5	-)	UNIT-III	10	002	7 . /
5	a)	Describe any one mechanism having all	L2	CO3	7 M
		turning pairs that generate an exact straight			
	1.)	line.	10		7
	b)	Derive the condition for generating a	L2	CO3	7 M
		straight line in Grasshopper's mechanism.			
		OR			

			T O	GOO	
6	a)	Derive an expression for the ratio of shaft	L2	CO3	7 M
		velocities in a Hooke's joint.			
	b)	In a Davi's steering gear, the distance	L4	CO3	7 M
		between the pivots of the front axle is 1			
		meter and the wheel base is 2.5 meters. Find			
		the inclination of the track arm to the			
		longitudinal axis of the car when it is			
		moving along a straight path?			
		UNIT-IV		11	
7 a) Draw and explain the displacement and L2 CO					
_		velocity diagrams for uniform velocity			7 M
		motion.			
	b)		L4	CO4	7 M
		distance of 50 mm in $1/3$ of revolution with			,
		SHM, keep it fully raised through 1/12 of			
		revolution and lower it with harmonic			
		motion in $1/6$ of revolution. The valve			
		remains closed during the rest of the			
		revolution. The diameter of the roller is			
		20 mm and the minimum radius of the cam			
		is 25 mm. The axis of the valve rod passes			
		through the axis of the cam shaft.			
		OR			
8	a)	Define angle of action, angle of dwell and	L2	CO4	7 M
		pressure angle in a cam with diagrammatic			
		representation.			
	b)	A cam, with a minimum radius of 50mm,	L4	CO4	7 M
		rotating clockwise at a uniform speed, is	LT		/ 171
		required to give a knife edge follower the			
		motion as described. (i) to move outwards			
		through 40mm during 100° of rotation of the			
		cam. (ii) to dwell for the next 80° (iii) to			
		return to its starting position during the next			

				, , , , , , , , , , , , , , , , , , , ,			
		90° (iv) to dwell for the rest period of					
		revolution.					
		Draw the profile of the cam when the line of					
		the stroke of the follower passes through the					
		center of the cam shaft when the					
		displacement of the follower is to take place					
		with uniform acceleration and uniform					
		retardation. Determine the maximum					
		velocity and acceleration when the cam					
		shaft rotates at 900 r.p.m.					
UNIT-V							
9	a)	Derive an expression for the length of path	L2	CO5	7 M		
		of contact.					
	b)	A pair of gears having 40 and 20 teeth	L4	CO5	7 M		
		respectively is rotating in mesh. The speed					
		of the smaller is 2000 rpm. Determine the					
		velocity of sliding at the point of					
		engagement, at the pitch point and at the					
		point of disengagement. Assume that the					
		gear teeth are 200 involute, addendum is					
		5 mm and module is 5 mm.					
		OR		,			
10	a)	Explain with a neat sketch the sun and	L2	CO5	7 M		
		planet wheel.					
	b)	In a reverted epicyclic train, the arm F	L4	CO5	7 M		
		carries two wheels A and D and a					
		compound wheel B-C. Wheel A meshes					
		with wheel B and Wheel D meshes with					
		wheel C. The number of teeth on wheel A,					
		D and C is 80, 48, and 72. Find the speed					
		and direction of wheel D, when wheel A is					
		fixed and arm F makes 200 rpm clockwise.					